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Abstract 

Accurate non-invasive diagnoses in the context of car-

diac diseases are problems that hitherto remain unre-

solved. We propose an unsupervised classification of atrial 

flutter (AFL) using dimensional transforms of ECG signals 

in high dimensional vector spaces. A mathematical model 

is used to generate synthetic signals based on clinical AFL 

signals, and hierarchical clustering analysis and novel 

machine learning (ML) methods are designed for the un-

supervised classification. Metrics and accuracy parame-

ters are created to assess the performance of the model, 

proving the power of this novel approach for the diagnosis 

of AFL from ECG using innovative AI algorithms. 
 

 

1. Introduction 

Machine Learning (ML) is leading the paradigm shift in 

the way we analyse and process cardiac signals for predic-

tion of diseases [1] and physiological events [2]. Unsuper-

vised learning is being used to identify parameters of the 

ECGs [3] [4]. Simulations, which are becoming more so-

phisticated for diseases such as atrial flutter (AFL) [5], 

could be of great use to train artificial intelligence (AI) al-

gorithms.  

We propose in this study a methodology based on signal 

processing techniques, ML, and mathematical modelling, 

to characterise and diagnose AFL, which has an increasing 

prevalence [6] and whose treatment could be more accu-

rately planned with prior information. To that end, we es-

tablish a mathematical framework in the context of Hilbert 

spaces to represent our surface signals through dimen-

sional transformations. We design metrics and agglomera-

tive nesting techniques to cluster AFL groups in an unsu-

pervised manner, providing an accurate diagnosis without 

any manual annotation. 
 

2. Materials and Methods 

2.1. Materials 

In this study we consider slow velocity conduction re-

gions as the main discriminant factor to classify different 

types of macroreentrant atrial tachyarrhythmias [7]. Thus, 

a variant of a synthetic model based on this principle [7] 

[8] is used to create 8,000 AFL VCG loops, of 8 different 

groups, which correspond to 4 different regions of slow 

conduction, and two propagation directions – clockwise 

(CW) and counterclockwise (CCW).  

 

2.2. Defining Vector Space for VCGs 

Let ℐ represent a distribution in the context of Hil-

bert spaces and F a field, avoiding in our study any field 

out of the sets of real or complex numbers (i.e. F = ℝ or     

F = C). 

Any multichannel signal can be represented from the 

concatenation of its waveforms in the different channels as 

a vector in F = ℝ or F = C in a Hilbert Space framework. 

Each of the temporal samples of the concatenated waves is 

translated as the magnitude of each of the components of 

than inner-product space. This vector is a generalization of 

ℝn of real (or complex) n-tuples, and is then  analogous to 

the particular waveform (from the concatenated channels) 

of each patient (see figure 1). 

 

2.3. Projecting the Signals 

With the aim of  working in a computationally efficient 

framework that can be generalised to more complex and 

demanding analyses, we propose an algorithm of dimen-

sionality reduction based indistinctly on Singular Value 

Decomposition (SVD) or Principal Components Analysis 

(PCA). The resultant vector subspace will host the pro-

jected vectors of the original representation of signals in a 

Hilbert Space with fewer dimensions. In particular, for a 

space S, every Cauchy Sequence of VCG samples as ele-

ments of that space must converge to an element of such 

space. In fact, for any positive λi ∈ R, an inner product is 

a function such that S x S→F: (v, w) ⟼ ⟨v, w⟩, ∀ v, w ∈ S. 

To that end,  let us define S as the original M-dimen-

sional space where the observations were firstly presented 

from the concatenated multichannel representation. We 

then define a non-empty subset of S and name it R over FP. 
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The necessary condition that needs to be fulfilled is that ∀s 

∈ S and f ∈ F the following is true: f · s ∈ R; ∀ s, s′ ∈ S; and 

s + s′ ∈ S. Hence, for a subset V = {υ1, υ 2, ..., υ N} ⊂ S over 

the vector space S over F, the VCG signals are represented 

in a space spanned by V and can be written as: 

span(𝜐1, 𝜐2, 𝜐3, … , 𝜐𝑁)  ∶= { ∑ 𝜉𝜅𝜐𝜅: 𝜉𝜅 ∈ ℱ
𝜅

 } 

 

2.4. Dimensionality Reduction 

The aforementioned projection indeed entails  a dimen-

sionality reduction process which can be easily illustrated 

through PCA. We can describe the samples for every indi-

vidual signal to belong to S and write them as y1, y2, ..., yN 

∈F M, where N is the number of patients (or individual sig-

nals) in the M-dimensional space.  It is a convenient pre-

processing step to strip off the mean as ∑ 𝑦𝜅 = 0𝜅 . 

The objective is now to maintain the highest amount of 

variance in the smaller dimensional space, defined by some 

integer P smaller than M. Thus, we are mapping as             

FM ⟼ FP to represent the VCG in a P-dimensional space. 

Namely, we are dealing with an optimisation problem of 

the form: 

min
�̃�

(∑‖𝑦𝜅‖2

N

𝜅

− ∑‖�̃�𝜅‖2

N

𝜅

) 

The projection matrix for dimensionality reduction can 

be defined by Ө such that ӨHӨ = IP, being then the map-

ping FM → FP : y ⟼ 𝑦 ̃= ӨӨHy. 

 

2.5. Assessing Closeness in a H.D. Space 

Different metrics have been proposed to evaluate the 

closeness between points, points and distributions and dis-

tributions in a high dimensional space [9]. An interesting 

metric among all those proposed for our problem is the Ma-

halanobis Distance (dM), which considers the distribution 

of the samples in the multivariate space, weighting the 

closeness with the inverse covariance matrix (Q ∶= Κςς
-1

 ) 

of the cluster – which is naturally non-singular. This is a 

classic way of dealing with correlating samples in a multi-

variate space, and can be understood in layman’s terms as 

measuring the relative distance to the centroid of the dis-

tribution ℐ, that is, how many standard deviations a point 

ς (i.e. ς = (ς1,…, ςM)) stands from the mean µ (such that       

µ  = (µ1,…, µM)) of ℐ. 

 

Figure 1. A: Concatenation of the three channels for a synthetic type of AFL. Each of these samples is used to provide magnitude 

to a dimension of the n-dimensional vector space where each wave is represented as a point. An example for three samples is 

depicted in blue, green and red (see C). One VCG is marked with a black line for illustration purposes (see B).  
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We can define it as: 

𝑑𝑀 = √(𝛓 − 𝛍)𝑇𝑄(𝛓 − 𝛍)
2

 

where, for the sake of clarity, the M-dimensional mean 

vector is defined as: 

𝜇 ∶= E[ς] = (E[ς1], E[ς1], … , E[ςM])T 

and the precision matrix as: 

Q ∶= Κςiς j
-1 = (E[(ςi - µi)( ςj - µj)])-1 

with 1 ≤ 𝑖, 𝑗 ≤ 𝑀. 

As a final remark, the choice of distance metric over 

other options such as Chebyshev or Minkowsky over a 

normed vector space, was tested on toy problems that eval-

uated their clustering performance over ground truths 

based on multivariate Gaussian Distributions with density: 

𝑓𝛓(ς1, … , ς𝑀) =
𝑒−

1
2

(𝛓−𝛍)𝑇𝑄(𝛓−𝛍)

√(2𝜋)𝑀|Κ 𝛓𝛓|
2

 

for the non-degenerate case. The generalisation to the degenerate 

case comes naturally from defining Q as the Moore-Penrose 

Pseudoinverse of Κ 𝛓𝛓, i.e. Q ∶= Κςiς j
ϯ .  

 

2.6. Hierarchical clustering 

To perform a classification, agglomerative nesting 

techniques are widely used to form groups in a stratified 

manner. In particular, hierarchical clustering analysis 

techniques are proposed in this study to group the families 

of signals that belong to the AFL type.  

From all the possible hierarchical clustering algo-

rithms, Ward’s version is found to be more efficient when 

looking for a clear hierarchy or clusters [10]. The imple-

mentation relies on the metric: 

𝑑𝑊(𝑢, 𝑣) = √
|𝑣| + |𝑟|

𝐶
𝑑𝑊(𝑢, 𝑣)2 +

|𝑣| + |𝑙|

𝐶
𝑑𝑊(𝑢, 𝑙)2 −

|𝑣|

𝐶
𝑑𝑊(𝑟, 𝑙)2, 

where the merging of r and l is represented by u and then 

v is the cluster that is not used for the forest, representing 

the cardinality with |·| and C = |v| + |r| + |l|. 
 

3. Results 

3.1. Closeness Among Clusters 

The designed metric S is created to define closeness 

(S=1 infinitely close, S=0 infinitely far). The clusters are 

evaluated in different low-dimensional sub-spaces pro-

jected from the original (579 dimensional-) space. The re-

sults of this metric are evaluated over clusters that have 

same slow conduction region (‘velocity’) and direction of 

conduction (‘direction’), those with same conduction ve-

locity (ignoring ‘direction’), and those with no velocity and 

conduction direction in common. Results are displayed in 

Table 1 and illustrations in Figure 2 B1-B2.  

Figure 2. A1-A2: Confusion matrix of the unsupervised clustering assignment in comparison to the ground truth for 4 (according 

to slow velocity region) and 8 (slow velocity and conduction direction) AFL types. B1-B2: Visualisation of a 2D and 3D vector 

space representation of the VCG signals for each of the 8 groups. 
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Table 1. Distance Metric Results Amongst Groups in Different Reduced-

Dimensional Spaces. 

Distance Metric Analysis 

Dimensions Groups   S 

Explained Variance = 0.996 

 

n = 6 

 

= Velocity, = Direction 0.35 

= Velocity 0.93 

Different Groups 0.04 

Explained Variance = 0.880 

 

n = 3 

 

= Velocity, = Direction 0.47 

= Velocity 0.94 

Different Groups 0.02 

Explained Variance = 0.820 

 

n = 2 

 

= Velocity, = Direction 0.94 

= Velocity 0.93 

Different Groups 0.02 

 

3.3.  Clustering Analysis 

K-means and Gaussian Mixture Models clusterings 

were used to evaluate the accuracy of the unsupervised 

classification of AFL types in the vector subspaces. Results 

for the different metrics are displayed in Table 2 and Fig-

ure 2.A1-A2.  

Table 2. Clustering Analysis Metrics Results: Macro-precision, recall, F1 

score, total true positive, total false positives and total false negatives. 

Clustering Analysis 

Dimensions Parameter Value 

# Clusters = 8 

 

n = 3 

 

Macro-Prec = Recall = F1 Sc. 0.874 

Total TP 6998 

Total FP = Total FN 1002 

# Clusters = 4 

 

n = 3 

 

Macro-Prec = Recall = F1 Sc. 0.999 

Total TP 7994 

Total FP = Total FN 6 

# Clusters = 4 

 

n = 2 

 

Macro-Prec = Recall = F1 Sc. 0.997 

Total TP 7980 

Total FP = Total FN 20 

 

4. Discussion 

Firstly, it is noticeable that principal components from 

the 7th dimension onwards explained less than 0.01 of the 

variance, proving the generalisability of the results in a 

computationally efficient way. Furthermore, the 6D-space 

results for the S metric show a clearly trained space where 

new unlabelled samples would be accurately classified, ac-

cording to its slow-conduction and direction velocity, that 

is, its AFL type (see tables 1 and 2). This multiclass clas-

sification is still effective with 0.88 variance in a 3D space, 

although in a 2D space the direction component is lost, 

meaning that we would only classify AFL according to the 

slow velocity conduction region – e.g. common from 

perimetral but not common CW from common CCW. In 

layman’s terms, new clinical cases could be diagnosed 

with high accuracy once this method is applied to train a 

vector space over previously diagnosed cases. 

Finally, the clustering analysis (see Figure 2.A1-A2) il-

lustrates the accuracy of unsupervised classification of the 

AFL types from the ML techniques applied to the raw 

VCG signal. In many cases (e.g. AFL), obtaining this in-

formation prior to ablation or treatment would be of great 

use for the physicians. 

 

5. Final Conclusions 

This article proves that classic bio-signal analysis tech-

niques combined with ML techniques in dimensional 

transforms in the context of Hilbert Spaces can provide a 

novel methodology to non-invasively diagnose and clas-

sify cardiac diseases from their ECG. This promising tech-

nique, proven to work in previously published simulations, 

is currently being applied to clinical signals. 
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